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Onset of oscillatory binary fluid convection in finite containers
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The onset of oscillatory convection in binary fluid mixtures in a two-dimensional domain with realistic
boundary conditions on all boundaries is determined as a function of the fluid parameters and the aspect ratio
G of the container. The first unstable mode has either odd or even parity under left-right reflection. Depending
on G and the separation ratioS, this mode has the form of a standing wave, or a ‘‘chevron,’’ consisting of a
pair of waves propagating outwards from the cell center~or, in some cases, inwards towards it!. Codimension-
two points at which odd and even parity modes are simultaneously marginally stable are determined, as are
various Takens-Bogdanov points. For fixedS,STB , all mode interactions among modes of like parity, arising
as G varies, are of the nonresonant Hopf-Hopf type; however, the details of the modal interchange are
organized by resonant Hopf bifurcations with 1:1 resonance. Particular attention is paid to the asymptotic mode
structure asG→`, and to the gap~in Rayleigh number and oscillation frequency! between successively
unstable modes. The results quantify the parameter regime in which the weakly nonlinear dynamics of the
system can be described in terms of the interaction of the first odd and even parity oscillatory modes.
@S1063-651X~99!06706-9#

PACS number~s!: 47.20.Bp, 47.20.Ky, 47.27.Te, 41.20.Jb
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I. INTRODUCTION

Binary fluid mixtures with a negative separation ratio e
hibit a wide variety of behavior when heated from belo
Particular attention has focused on the transition to vari
types of traveling waves with increasing Rayleigh numb
The experimental situation is summarized in Refs.@1,2#.
Some of these experiments have been carried out in na
gap annular containers, others in rectangular boxes. The
experimental arrangements differ in a fundamental way
the former, the system is periodic and consequently the
tial instability can develop into a uniform pattern of travelin
waves. This is no longer so when sidewalls are present.
presence of sidewalls destroys the translation invaria
present in the annular~or unbounded! system, with the resul
that the finite system has only a left-right reflection symm
try. Consequently, the eigenfunctions of the latter system
either odd or even under left-right reflection, but are oth
wise unconstrained by the symmetries@3#. In contrast, in the
annular~or unbounded! case the presence of translation i
variance with periodic boundary conditions forces the eig
functions to be sinusoidal functions with a single wave nu
ber in the horizontal direction. Such eigenfunctions take
form of left- and right-traveling waves. In many cases t
system also has a midplane reflection symmetry. Howe
when the initial bifurcation is oscillatory, this symmetry
equivalent to evolution in time by half a period and hen
has no effect on the dynamics.

The difference in symmetry between the bounded and
bounded systems is crucial, and is present regardless o
aspect ratio of the system. It suggests that while unboun
systems are best described in terms of amplitude equa
for the amplitudes of left- and right-traveling wave
bounded systems should be described in terms of odd
even modes~cf. @4#!. However, at present, the structure
such modes is unknown@5#, except in the simplest of al
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possible cases, that of Neumann boundary conditions at
sidewalls@6#. These boundary conditions describe stress-f
sidewalls with no sideways concentration and heat flux
They are special because the resulting eigenfunction ca
reflected in the sidewall without introducing a discontinu
in derivatives. As a result, it is possible to generate an eig
function of the domain of twice the size by a simple refle
tion, and thereby embed the problem in a periodic bound
conditions problem with a period twice that of the origin
domain~cf. @7#!. Consequently, the eigenfunctions for Ne
mann boundary conditions are also harmonic with a sin
wave number in the horizontal direction. These take the fo
of uniform amplitude standing waves. However, aside fro
this special case, one expects eigenfunctions of more c
plex spatiotemporal behavior, subject only to the requi
ment of odd or even parity. These are the eigenfunctions
are computed in this paper. These calculations are done
parameter values of experimental interest. Transitions
tween different modes are studied in detail as a function
the aspect and separation ratios, and their asymptotic p
erties for large aspect ratios are investigated. Of particu
significance is the observation that for largeG the maximum
growth rate and frequency differences between the first
modes that set in both scale asG22. This result supports the
description of the system in terms of an interaction betwe
the first odd and even modes@4#, and the subsequent inte
pretation of experimentally observed bursting behavior giv
in @8#.

II. LINEAR STABILITY PROBLEM

We consider a two-dimensional binary fluid mixture in
rectangular containerD[$x,zu2 1

2 G<x< 1
2 G,2 1

2 <z< 1
2 %

heated uniformly from below. In the Boussinesq approxim
tion appropriate to the experiments, the resulting system
described by the nondimensionalized equations@9#
6730 ©1999 The American Physical Society
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] tu1~u•“ !u52“P1sR@u~11S!2Sh# ẑ1s¹2u,
~2.1a!

] tu1~u•“ !u5w1¹2u, ~2.1b!

] th1~u•“ !h5t¹2h1¹2u, ~2.1c!

together with the incompressibility condition

“•u50. ~2.1d!

Hereu[(u,w) is the velocity field in (x,z) coordinates,P,
u, andC denote the departures of the pressure, tempera
and concentration fields from their conduction profiles, a
h[u2C. The system is specified by four dimensionless
rameters: the separation ratioS, the Prandtl and Lewis num
berss, t, and by the Rayleigh numberR, in addition to the
aspect ratioG. The boundary conditions adopted will b
those relevant to experiments performed in finite contain
Thus the boundaries will be no-slip everywhere, with t
temperature fixed at the top and bottom, and no sidew
heat flux. The final set of boundary conditions is provided
the requirement that there is no mass flux through any of
boundaries. The boundary conditions are thus

u5n•“h50 on ]D ~2.2!

and

u50 at z561/2, ]xu50 at x56 1
2 G. ~2.3!

Here]D denotes the boundary ofD.
To reduce the number of equations involved, we int

duce the stream functionc such that

u5~2]zc,]xc!. ~2.4!

The nonlinear problem~2.1! can be written in the abstrac
notation

Lf5N~f,f!, ~2.5!

where

L[S ¹22] t ]x 0

sR~11S!]x ¹2~s¹22] t! 2sS]x

¹2 0 t¹22] t

D , ~2.6!

N denotes the nonlinear terms, andf[(u,c,h). Equation
~2.5! is to be solved subject to the boundary conditions

c5n•“c5n•“h50 on ]D ~2.7!

and Eq.~2.3!. In this paper we focus our attention on th
linear stability properties of the conduction statef[0, i.e.,
the solutions of the linear problemLf50. The nonlinear
problem will be the topic of a future paper.

To determine the critical values of the Rayleigh numbeR
at which the conduction state loses stability to oversta
convection and the corresponding frequencyv, we look for
solutions to the linearized equations of the form

f5 f ~x,z!e(s1 iv)t. ~2.8!
re,
d
-

s.
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The conditions50 defines the onset of instability and yield
a complex condition that can be solved forR and v as a
function of the aspect ratioG for various values ofs, t, and
the separation ratioS. In the following section we summariz
our results for two sets of parameters:s50.6, t50.03
~typical of 3He/4He mixtures!, and s518.0, t50.012
~typical of water-ethanol mixtures!. These choices are moti
vated by the experiments of Sullivan and Ahlers@10# and
Steinberget al. @2#, respectively.

III. RESULTS

In this section we describe the results obtained for t
systems,3He/4He and water-ethanol mixtures, as functio
of both the separation ratio of the mixture and the asp
ratio of the container.

A. 3He/4He mixtures

We describe first the results for typical3He/4He param-
eters:s50.6, t50.03. We begin by describing the resul
for modest aspect ratios, 4.0<G<12.0. Figure 1 shows the
eigenvaluesR(G) andv(G) for two values of the separatio
ratio, S520.001 andS520.01, in each case for the firs
even ~solid line! and the first odd~dashed line! mode. For
S520.001, Fig. 1 reveals an oscillatory approach of bo
sets of curves towards the critical Rayleigh numberR` and
frequencyv` for an unbounded domain. The braiding of th
neutral stability curvesR(G), seen in Fig. 1~a!, is familiar
from studies of stationary Rayleigh-Be´nard convection@11–
13#, and is found in other systems as well@14#. Because of
the braiding, the neutral stability curves for the first odd a
first even modes cross repeatedly. Such mode crossing
dicate the presence of codimension-two bifurcations. Fig
1~b! shows that at these points the frequencies of the c
peting modes are distinct. Consequently, these mode inte
tion points correspond to nonresonant double Hopf bifur
tions. However, whenS520.01, the situation changes: fo
large enough aspect ratios (G.10.0) the two neutral curves
develop cusps@Fig. 1~c!#. The presence of these cusps
reflected in the discontinuous jumps in the correspond
frequency curves@Fig. 1~d!#. Figure 2 shows the develop
ment of these cusps with decreasingS, focusing on the range
10.0<G<12.0. The figure shows the firsttwo even ~solid
lines! and odd~dashed lines! modes atS520.005 @Figs.
2~a! and 2~b!#; S520.008 @Figs. 2~c! and 2~d!#, and S5
20.01@Figs. 2~e! and 2~f!#. In Fig. 2~a! thick ~thin! lines are
used to indicate the first~second! mode of each parity and
this coding is used to identify the corresponding modes
Figs. 2~c! and 2~e!. In the latter the dotted and dashed-dott
curves indicate even and odd modes originating from
higher modes in Fig. 2~a!. Observe that in Fig. 2~a! the neu-
tral stability curves for the two odd modes avoid one anoth
as do the corresponding curves for the two even modes
the same time the two sets of frequency curves intertw
As S decreases the two odd modes come together neaG
510.5 and their frequencies coalesce, apparently with
frequency of the primary even mode; similar behavior
volving the two even modes takes place nearG511.5 @see
Fig. 2~d!#. At somewhat smallerS the two Rayleigh number
curves cross transversely@Fig. 2~e!# as the first and secon
modes of each parity trade places,
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FIG. 1. Onset of convection in3He/4He mixtures (s50.6, t50.03) in moderate aspect ratio containers.~a! Neutral stability curves and
~b! corresponding frequencies for the first even~solid line! and odd~dashed line! modes as a function of the aspect ratioG for S
520.001.~c! and ~d! are the same as~a! and ~b! but for S520.01.
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forming the cusps seen in Fig. 1~c!. In the range of aspec
ratios shown this happens first for the even modes, clo
followed by the odd modes. At the same time the cor
sponding frequency curves separate and thereafter no lo
cross. The same interchange mechanism is also respon
for the appearance of the cusp in the second even m
neutral stability curve nearG510.3 with a yet higher orde
even mode involved~dotted line!, with similar behavior oc-
curring for the second odd mode nearG511.3 as well@Fig.
2~c!#.

This type of behavior can be understood as follows. C
sider first the case of stationary convection in a finite box
this case the neutral stability curves for the first odd and e
modes are braided much as in Fig. 1~a!, and so are the cor
responding curves for the second odd and even modes,
These families do not interact, i.e., the primary instability
always to either an odd or an even mode from the first fa
ily. In this case it is known that asG→` the gap between
adjacent families isO(G22), while the amplitude of the os
cillations in the neutral curves is onlyO(G23), i.e., when the
aspect ratio is large enough a gap opens up between the
family of neutral curves and the next@11,13,15#. In the case
of oscillatory onset the situation is more complex. For fix
S, however small, the braiding behavior continues for mo
erate aspect ratios, but with increasingG the different fami-
lies of neutral curves begin to interact and the even and
modes that come in first can be traced to successively hi
families. The necessary crossing between modes of like
ity originating in adjacent families is mediated by 1:1 res
ly
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nances located at discrete points (Rc
(3) ,Gc

(3) ,Sc
(3)) in the

three-dimensional parameter space (R,G,S) as we now de-
scribe.

At each 1:1 resonance the linear problem takes the fo

S ż1

ż2
D 5S ivc

(3) 1

0 ivc
(3)D S z1

z2
D , ~3.1!

wherez1 andz2 are the complex amplitudes of the first tw
like-parity modes. Herevc

(3) is the resonant frequency. Thi
Jordan block form arises because both modes have thesame
symmetry. In contrast, a 1:1 resonance between an odd
an even mode would have a diagonal linearization; the in
section of the corresponding neutral curves is then rob
under perturbations~unfolding! of the normal form. This is
not so when both modes have like parity. Since the 1:1 re
nance is a codimension-three phenomenon@it is necessary to
chooseRc

(3) , Gc
(3) to locate the crossing of the neutral st

bility curves, and vary a third parameter~hereS) to match
the frequencies at the crossing point#, the most general de
formation of the Jordan block appearing in Eq.~3.1! depends
on three real parameters. The resulting linear system is@16#

S ż1

ż2
D 5S ivc

(3)1a 1

m11 im2 ivc
(3)1a

D S z1

z2
D ~3.2!

and leads to the characteristic equation
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FIG. 2. Details of the recon-
nection process between tw
modes of like parity for~a! and
~b! S520.005, ~c! and ~d! S
520.008, and ~e! and ~f! S
520.01, whens50.6, t50.03.
In ~a! solid ~dashed! lines denote
even ~odd! modes, while thick
~thin! lines denote first~second!
modes of each type.
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~s2a2 ivc
(3)!22m12 im250 ~3.3!

for solutions of the form expst. To find the neutral curves we
sets5 iv and obtain the two real equations

~v2vc
(3)!21m12a250, 2a~v2vc

(3)!1m250. ~3.4!

It follows that

a25
1

2
~m11Am1

21m2
2! ~3.5!

and

~v2vc
(3)!25

1

2
~2m11Am1

21m2
2!. ~3.6!

We now examine these relations in turn. It is convenien
think of Eq. ~3.5! as describing the dependence ofa on m2

for fixed m1. Whenm1.0, ua(m2)u>Am1 with zero slope
at m250, and a'6Aum2u/2 for um2u@m1. Consequently,
when m1 is small, the curveua(m2)u has a narrow but
rounded minimum atm250, but rapidly becomes convex a
um2u increases away from zero. A tendency towards this t
of behavior can be seen in Fig. 2~c! nearG511.5 and be-
comes more and more pronounced as the two even m
neutral curves approach one another. Moreover, whenm1
,0 and um2u!um1u, one finds that locallya(m2) takes the
form of a pair of straight lines through the origin,a
o

e

de

561
2um1u21/2m2, with the same6Aum2u/2 behavior forum2u

@um1u. Thus when um1u is small the slope of the lines
through the origin is large. This type of behavior can be se
near the crossing of the two odd modes in Fig. 2~e! (G
'10.5). Together these observations suggest that we ide
a, m1, and m2 with DR[(R2Rc

(3))/Rc
(3) , DS[(S

2Sc
(3))/Sc

(3), andDG[(G2Gc
(3))/Gc

(3) , respectively, in place
of the more general linear relation

~m1 ,m2 ,a!T5M ~DS ,DG ,DR!T1•••, ~3.7!

whereM is a constant 333 matrix. We return to this point
below.

This identification is supported by the behavior of t
frequencyv as a function ofm2. When m1.0, Eq. ~3.6!
shows thatv2vc

(3) takes the form of two straight line
crossing at the origin, and convex away fromm250. The
slope of these lines at the origin,6 1

2 m1
21/2, is large whenm1

is small, with the result that the two positive branches ofv
2vc

(3) form a cusp at the origin, as do the two negati
branches, i.e., the curves cross@see Fig. 2~d!#. When m1

,0, uv2vc
(3)u5A2m1 at m250 with zero slope there and

convex behavior forum2u@um1u. In other words, the cusp
lifts off the axis and becomes differentiable as the two f
quency curves cease crossing and detach@Fig. 2~f!#. This
process is the reverse of what happens in thea(m2) curves,
and accounts for the~local! resemblence between the Ra
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FIG. 3. Details of the passag
through 1:1 resonance atRc

(3)

51855.80, Gc
(3)510.4816, Sc

(3)

520.00994, showing the forma
tion of a small loop prior to the
resonance.
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leigh number plot forS.Sc
(3) and the frequency plot forS

,Sc
(3) , and vice versa. The origin of the frequency jum

seen in Fig. 1~d! for S520.01 is now clear: if one follows
the neutral stability curve for thefirst even mode to set in
@Fig. 2~e!#, one must switch at the mode crossing point fro
the thick solid frequency curve to the thin one. Such f
quency jumps are thus the result of the detachment of
frequency curves at the 1:1 resonance. Note that away f
S5Sc

(3) the two odd and the two even neutral curves cros
a structurally stable way. This is because the frequencie
the mode crossings are now nonresonant@cf. Fig. 2~f!#.

Note also that the critical frequencyvc
(3) of the two odd

modes appears to coincide with the frequency of one of
even modes, and vice versa. Despite this coincidence~which
we do not understand!, this even mode is not in resonanc
with the two odd modes; it sets in at a lower value ofR and
is therefore already unstable. Consequently, all of the c
plex dynamics associated with the odd-odd 1:1 resona
@16# are unstable to even parity perturbations and vice ve
-
e
m
n
at

e

-
ce
a,

i.e., the 1:1 resonances are alwaysshielded. Nonetheless, as
indicated above, these resonances provide the key to m
exchange between like-parity modes as the aspect ratio o
system is increased and hence to the fact that different mo
ultimately set in as primary modes asG increases. Loosely
speaking, these modes differ in the number of ‘‘rolls
present, although in the present system this number is
constant along any continuous neutral curve. This is a c
sequence of the non-Neumann boundary conditions at
sidewalls~cf. @13#!.

The above theory apparently provides a complete desc
tion of the transformation of the neutral stability curves
the 1:1 resonance. In fact, a careful examination of the re
nance nearG510.5 reveals an unexpected surprise. Figur
summarizes what happens: as the resonance is approa
the first odd mode develops a cusp before the mode ‘‘cro
ing’’ takes place. This cusp is associated with a hystere
‘‘bifurcation’’ in its frequency. As uSu increases the cusp
turns into a loop that grows in size as the two neutral sta
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ity curves approach one another. At the 1:1 resonance
two neutral curves touch, and so do the corresponding
quency curves. However, in contrast to the theory descri
above, both do so with an orientation that is opposite of t
predicted. With further increase inuSu both sets of curves
reconnect and move apart, eventually producing the m
crossing shown in Figs. 2~e! and 2~f!. Thus at the actual 1:1
resonance no mode crossing in fact takes place; the m
crossing seen in Fig. 2~e! is in fact formed when the neutra
stability curve first develops the loop. This type of mo
interaction can also be described by the above theory,
requires a conversion from the unfolding parameters to th
used in the calculations. This conversion is nonlinear. If
suppose that (DS ,DG ,DR)5O(e), e!1, and examine the
relations~3.4! we are forced to conclude that at leading ord
m1,25O(e2), while a andv2vc

(3) are bothO(e). Thusm1,2

are in fact bothquadratic functions ofDS ,DG ,DR , in con-
trast to the naive relation~3.7!. It follows that the relation
between m1,2 and a given by Eqs. ~3.4! is quartic in
DS ,DG ,DR . WhenDS50 the resulting relation betweenDR
andDG has either two or four real roots, describing the tw
types of mode crossings that can occur in these variables
the detailed appearance depends on the coefficients.
likely that a similar nonlinear relation between the unfoldi
and physical parameters is also responsible for the forma
of the cusp seen in Fig. 3 even though the normal form~3.2!
is not an unfolding of this degeneracy.

We have used Fig. 3 and similar figures to locate three
resonances:

Rc
(3)51855.80, Gc

(3)510.4816, Sc
(3)520.00994,

~3.8a!

Rc
(3)51803.80, Gc

(3)519.8062, Sc
(3)520.006028,

~3.8b!

Rc
(3)51784.15, Gc

(3)534.2444, Sc
(3)520.00403.

~3.8c!

The resonant frequencies at these points are 1.318, 0
and 0.76, respectively. The first of these resonances is sh
in Fig. 3; the next is also associated with loop formatio
although the loop is much smaller. Specifically, if we ch
acterize the loop in theG'10 container by its size,DR
'1.5, and extent,DS'1025, in the G'20 container the
corresponding quantities areDR'0.5 andDS'1026. For
the third resonance, nearG534, the loop~if it exists! is too
small to be resolved. Thus the loops apparently disappea
G increases.

In contrast to the codimension-three bifurcations just d
cussed the codimension-two odd/even interactions are
shielded. Consequently, the dynamics arising from the in
action between the first odd and even modes is observab
the nonlinear problem. At these bifurcations the linear pr
lem takes the form

S ż1

ż2

D 5S ivc1
(2) 0

0 ivc2
(2)D S z1

z2
D , ~3.9!
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wherez6 denote the complex amplitudes of the even (1)
and odd (2) modes, respectively. The unfolded linear pro
lem is then given by

S ż1

ż2

D 5S m11 iv1 0

0 m21 iv2
D S z1

z2
D , ~3.10!

wherem6 represent the growth rates of the two modes a
v62vc6

(2)5O(m6). These growth rates vanish at the mo
crossings, hereafter denoted by (Rc

(2) ,Gc
(2)). As already men-

tioned these results remain valid even ifvc1
(2)5vc2

(2) , i.e,
even at resonance.

In Fig. 4 we show the first even and odd temperatu
modes forG510.0 whenS520.001 ~top panels! and S
520.01~lower panels!. The modes are shown in the form o
space-time diagrams, with time increasing upwards. W

FIG. 4. Space-time diagrams, with time increasing upwar
showing the evolution of the midplane temperature as a function
location x in a G510.0 container,25.0<x<5.0. Top panels,S
520.001; bottom panels,S520.01. The eigenfunctions in the
former case are standing waves, but become chevronlike stat
the latter.
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FIG. 5. Neutral stability curves
and onset frequencies for conve
tion in 3He/4He mixtures (s
50.6, t50.03) in large aspect
ratio containers when~a! and
~b! S520.001, ~c! and ~d! S
520.004, and ~e! and ~f! S
520.01. In ~a! solid ~dashed!
lines denote even~odd! modes,
while thick ~thin! lines denote first
~second! modes of each type.
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S520.001 both eigenfunctions take the form of standi
waves, with the dynamics either in phase at the two sidew
~even mode! or out of phase~odd mode!. The amplitude of
the standing oscillations peaks in the middle of the conta
ers and decreases towards the sidewalls. There is a cons
able phase lag~not shown! between the temperature and co
centration oscillation, a consequence of the small value ot.
In both cases the wavelength of the standing waves is alm
uniform across the cell, in contrast to the amplitude.

As S decreases the eigenfunctions gradually develop
‘‘chevronlike’’ states, as indicated in the space-time d
grams forS520.01. Both even and odd modes consist
waves propagating outward from the container center
modulated in amplitude at the Hopf frequencyv. In particu-
lar, away from the center of the container the node lines
now defined for all time and these propagate slowly wh
the amplitude is large and rather more rapidly when it
small. Thus the resulting oscillation has the form of a larg
amplitude near-stationary state followed by a shor
smaller-amplitude propagative phase during which the n
translates outwards by half a wavelength, followed by
other large-amplitude near-stationary phase, etc. Despit
complexity the resulting oscillation is of course sinusoidal
time. Also of interest is the fact that nodes are continua
born in the middle of the container. This is necessary
waves continually propagate outwards, but it indicates t
quite complex behavior with sources~or sinks! is readily
described bylinear eigenfunctions, i.e., there is nothing in
trinsically nonlinear about such features. Note, however,
lls

-
er-

st

to
-
f
d

re
n
s
-
r
e
-
its

y
if
at

at

the amplitude of the eigenfunctions still peaks in the cen
and that the wavelength of both modes remains essent
constant across the container.

It is of interest to compare the above results with those
G534.0, the aspect ratio used by Sullivan and Ahlers@10#.
In Fig. 5 we show the neutral stability curves and cor
sponding frequencies for the first four modes in the ran
33.0<G<35.0 forS520.001, S520.004, andS520.01.
A comparison with Figs. 1 and 2 reveals that the frequenc
of the dominant modes are evidently determined prima
by the fluid parameters and not the aspect ratio. This is
cause the oscillations are bulk oscillations that are modi
but not caused by the presence of sidewalls. Figure 5~a!
shows that whenuSu is sufficiently small the first two fami-
lies of neutral curves are separated by a gap that is m
larger than the amplitude of the braids within each fami
This is typical of what happens in Rayleigh-Be´nard convec-
tion with non-Neumann boundary conditions@13#. However,
in the case of overstability this behavior changes asuSu in-
creases@Fig. 5~c!# and begins to look like that shown in Fig
5~e!. This figure shows the neutral curves forS520.01 but
the same range ofG, and reveals the crossing of adjace
even modes. This mode crossing involves anonresonant
double Hopf bifurcation@Fig. 5~f!# and is the result of a
resonant 1:1 mode crossing atS520.00403@see Figs. 5~c!
and 5~d!#, i.e., it is formed by the same process as that le
ing to the nonresonant crossings shown in Figs. 2~e! and 2~f!.
The fact that the frequency curves in Fig. 5~f! are essentially
parallel ‘‘straight lines’’ confirms that this mode crossing
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‘‘far’’ from the 1:1 resonance atS520.00403. The figure is
also in agreement with the plausible hypothesis that in la
aspect ratio systems the frequencies of the first few mo
must take the form

vn;v`1c1nG211c2nG221•••, n51,2, . . . ,
~3.11!

where the indexn specifies the order in which the mode
become primary asG increases. Thus thenth mode is pri-
mary in the intervalGn21<G<Gn , etc. It follows thatn
5O(G). The results of Fig. 5 suggest thatc1n;c1 , c2n
;nc2, wherec1 andc2 areO(1) constants independent ofn
andG. Then, at any~large! G, there is anO(G21) correction
to v` , while nnv[vn112vn5O(G22). Thus near any
particularG the quantitynnv takes the form, as a functio
of G, of a set of equally spaced, almost horizontal, lines.
have checked that similar behavior occurs forS520.021 as
well. Figure 5 therefore suggests that for largeG the splitting
nv in frequency andnR in Rayleigh number between th
first odd and even modes are both of thesameorder asG
→`. As discussed in Sec. IV, this conclusion implies th
the normal form describing the interaction between odd
even modes in the large aspect ratio limit has approxim
D4 symmetry, as argued by Landsberg and Knobloch@4#.

Figure 6 shows the first odd temperature eigenfunction
S520.001 andS520.021, again in the form of space-tim
diagrams. In the former case the eigenfunction now cons
of a pair of waves travelinginwards, with the center of the
container serving as a sink. Once again the wavelengt
very uniform across the container despite the fact that
amplitude varies substantially~lower left panel!. When S
520.021 the direction of propagation is outwards with t
center of the container having become a source. The am
tude now has a local minimum at the center and increa
outwards, peaking near the sidewalls~lower right panel!.
This type of eigenfunction was anticipated by Cross@17#,
and is characteristic of eigenfunctions in systems withposi-
tive group velocity. In our finite system we cannot, strict
speaking, define a group velocity since the allowed wa
number is quantized by the sidewalls, as well as being n
uniform. However, for the purposes of the present paper
most important observation is that for aspect ratios this la
the odd and even eigenfunctions are essentially indis
guishable, as hypothesized by Landsberg and Knobloch@4#.

As is well known, oscillations in binary mixtures ar
present only for sufficiently largeuSu. We have examined the
effect of sidewalls on the transition from oscillatory onset
steady onset asuSu decreases. ForG'10 these results ar
summarized in Fig. 7. AsuSu is decreased forG59.7 the
frequency~not shown! of the first mode~an odd mode! de-
creases smoothly to zero atS[STB'20.000516 and, there
after, a steady mode of the same parity is preferred. The
frequency point is known as a Takens-Bogdanov point
such a point the linearization takes the form

S ṗ

q̇
D 5S 0 1

0 0D S p

qD , ~3.12!

wherep(t) is a real amplitude and
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u~x,z,t !5p~ t ! f 2~x,z!1••• . ~3.13!

The Takens-Bogdanov point is of codimension two and
unfolding is given by

S ṗ

q̇
D 5S 0 1

m n
D S p

qD , ~3.14!

where m and n are real unfolding parameters related toR
2RTB andS2STB . ForG59.8 the situation changes. AsuSu
decreases an oscillatory odd mode is now superseded
steady even mode atS'20.000532, while the oscillatory
mode still has a finite frequency. The resulting transition i
Hopf steady state interaction, and is also of codimens
two. A similar transition occurs whenG59.9. Finally, when
G510.0 the even mode is preferred on either side of
Takens-Bogdanov transition and remains so untilG510.7
where an odd mode begins to take over again. The trans
at G534.0 is also an interaction between an oscillatory o
mode and a steady even mode, and occurs atS
520.000555 andR51761.55. It is of interest to compar
these results with those for an unbounded layer with perio
boundary conditions@18#. Here the Takens-Bogdanov poin
is alwaysshielded by an oscillatory instability that preced

FIG. 6. Space-time plots of the midplane temperature, with ti
increasing upwards, showing the evolution of the first unsta
mode as a function of locationx in a G534.0 container,217.0
<x<17.0. Top left panel, S520.001; top right panel,S
520.021. The lower panels show the corresponding midplane t
perature profiles att50.3T, t50.5T, respectively, whereT is the
Hopf period.
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FIG. 7. Transition between oscillatory and steady onsets as a function of the separation ratio for the first even~solid lines! and first odd
~dashed lines! modes for aspect ratios nearG510 ands50.6, t50.03. ~a! G59.7, ~b! G59.8, ~c! G59.9, and~d! G510.0. The lines to
the left ~right! of the break in slope correspond to steady~oscillatory! onset.
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it. Specifically, RTB'1758.2 andSTB'20.000530 with
wave numberkTB53.0754, but the transition to steady co
vection takes place already atS'20.000544. At thisS
steady convection sets in atR51758.18 and has the wav
numberk53.1420. However, in contrast to the finite co
tainer situation this transition cannot be described by a fin
dimensional Hopf steady state normal form because
wave numbers at this transition are effectively incommen
rate. Although the shielding effect is evidently small it do
imply that in an unbounded system the dynamics associ
with the Takens-Bogdanov point may be unobservable
contrast, in a finite system, our calculations indicate that
shielding of the Takens-Bogdanov point is relatively rare~it
occurs for about 18% of the aspect ratios nearG510) and
indeed dynamics associated with such a point have been
tected in experiments@19#. The Hopf steady state interac
tions are also, in principle, observable. Note that by vary
the aspect ratio it should be possible to locate sev
codimension-3 bifurations. A double Takens-Bogdanov
furcation at which the first odd and even modes both h
zero frequency simultaneously may be accessible. As of n
this codimension-three bifurcation has not been studied
specific predictions about the resulting dynamics canno
made.

B. Water-ethanol mixtures

In Fig. 8 we show the critical Rayleigh numbers and a
sociated frequencies for the first even and odd mode
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water-ethanol mixtures (s518.0, t50.012) for 4.0<G
<12.0 andS520.001@Figs. 8~a! and 8~b!# S520.01@Figs.
8~c! and 8~d!#. Except for quantitative differences, the beha
ior of these curves resembles strongly that shown in Fig
for He3/He4 mixtures. In particular, we see again the form
tion of cusps with increasing aspect ratio, indicating the pr
ence of mode crossing. The resulting eigenfunctions
qualitatively similar as well. Indeed, a stable chevronli
pattern has been observed near onset in an ethanol-w
mixture with these parameter values (t50.012, s518) at
S520.014 @2#. Weakly nonlinear calculations in an un
bounded domain with these parameter values show
stable chevrons are first present whenSexceeds20.011@9#,
in close correspondence with the experimental observat
The fact that these states occur stably in such a limited ra
of S may explain why they have been observed in so f
experiments.

IV. DISCUSSION

In this paper we have described in detail the onset
oscillatory convection in a two-dimensional container w
realistic boundary conditions applied on all four boundari
These results indicate that the sidewalls introduce a num
of complications into the system even if the aspect ratio
quite large. We have seen that the competition between
and even modes in such a system takes one of two b
forms, depending on the separation and aspect ratios~see
Fig. 9!. WhenuSu is small~i.e., close toSTB) andG is not too
large, the mode interaction takes the form familiar fro
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FIG. 8. Onset of convection in water-ethanol mixtures (s518, t50.012) in moderate aspect ratio containers.~a! Neutral stability
curves and~b! corresponding frequencies for the first even~solid line! and odd~dashed line! modes as a function of the aspect ratioG for
S520.001.~c! and ~d! are the same as~a! and ~b! but for S520.01.
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Rayleigh-Bénard convection with non-Neumann bounda
conditions: the neutral curvesR(G) divide neatly between
different families and there is no intermingling among the
@see Fig. 5~a!#. Each family consists of a pair of braide
neutral curves, one for an odd mode and the other for
even mode, with each family well separated from the next
least for the low-lying families. The crossings between o
and even modes within each family are structurally sta
because of their different parity. At fixedG and large enough
uSu the situation is quite different@see Fig. 5~c!#. There are
now no distinct families of neutral curves and all mod
~including like-parity modes! cross. These mode crossing
are all structurally stable, either because the modes have
posite parity, or because their frequencies at the mode cr
ings are nonresonant. The transition between these two t
of behavior occurs via 1:1 resonant mode interactions a
lustrated in Fig. 2. These interactions allow mode crossi
between like-parity modes belonging to different famili
and hence are responsible for the transition between the
tral stability curves in Figs. 5~a! and 5~c!. Likewise, at fixed
S the neutral stability curves are braided when the asp
ratio G is not too large, but with increasingG nonresonant
crossings between like-parity modes appear~cf. Fig. 2!, as
anticipated by Hirschberg and Knobloch@13#. We have also
seen that in a finite system the Takens-Bogdanov poin
likely to be accessible to experimental study if the asp
ratio is chosen appropriately, and likewise for Hopf stea
state interactions between opposite parity modes. Both
servations may shed light on the experiments@10,20#. On the
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basis of our calculations we have made several conject
about the behavior of the neutral stability curves and co
sponding frequencies and eigenfunctions for large aspec
tios. These bear out the picture of large aspect ratio syst
put forward by Landsberg and Knobloch@4# with two sig-
nificant clarifications. First, we have found that if the sep
ration ratio is small there is a substantial range of asp
ratios within which the first odd and even modes to set in
separated from the next pair by a significant gap in Rayle
number. In this range the existence of the gap justifies
reduction of the partial differential equations to amplitu
equations for the first odd and even modes only. We h
presented examples of what these modes look like. Howe
for sufficiently large aspect ratios or sufficiently large sep
ration ratios this gap disappears, and odd and even mo
from different families are selected in succession. In this c
the reduction to a pair of amplitude equations continues to
valid near all crossing points between odd and even mo
but it is no longer clear whether such a description captu
the behavior of the system for all intervening aspect rati
Second, we have found that the frequency difference
tween the competing odd and even parity modes scale
G22 for largeG instead of the expectedG21 behavior. This
observation strengthens the argument in favor of Ref.@4# as
we now describe.

In Ref. @4# Landsberg and Knobloch suggested th
weakly nonlinear overstable systems in large aspect r
containers are properly described by the normal form eq
tions for a double Hopf bifurcation with brokenD4 symme-
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try, and used this approach to suggest an explanation fo
intermittent bursting observed at the onset of convection
Sullivan and Ahlers@10#. The details of the bursting mecha
nism are described in Ref.@8#. The mechanism relies on th
presence of approximateD4 symmetry for the formation of
global connections to ‘‘infinity’’ and back again; excursion
along these connections are identified with the obser
bursts. TheD4 symmetry arises naturally in these system
Recall that the amplitude equations describing the interac
of the first odd and even modes must be equivariant w
respect to

~z1 ,z2!→~z1 ,2z2!, ~4.1!

owing to the reflection symmetryx→2x, (u,c,h)→(u,
2c,h) of the original system@Eqs.~2.5!–~2.7!#. Landsberg
and Knobloch argued that in the large aspect ratio limit th
is, in addition, an interchange symmetry between the odd
even modes since these are effectively indistinguisha
throughout most of the domain. Thus the normal form sho
also be equivariant under

~z1 ,z2!→~z2 ,z1!. ~4.2!

These two reflections generate the symmetryD4. However,
since the interchange symmetry is not exact for any finiteG
~at any finiteG the first mode is either odd or even, exce
for a discrete set ofG) this D4 symmetry is broken. Since th
dominant interchange-breaking terms are linear@cf. Eq.
~3.10!#, the system is described by the amplitude equati
@4#

ż15~m11 iv1!z11Auz1u2z11Buz2u2z11Cz̄1z2
2 ,

~4.3a!

ż25~m21 iv2!z21Auz2u2z21Buz1u2z21Cz̄2z1
2 .

~4.3b!

HereA, B, C are complexO(1) coefficients and the sma
interchange-breaking parametersnm[m12m2 , nv
[v12v2 capture the effects of a finite aspect ratio. Land
berg and Knobloch further argue that because the neu

FIG. 9. The (G,S) plane showing the approximate location of mo
avoidance~hatched region! and mode crossing~unhatched region!.
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stability curve for an unbounded system is parabolic near
minimum nm5O(G22) for large G, but anticipate that
nv5O(G21) on the grounds that the frequency is typica
not at a minimum. In this case it is possible to use averag
to eliminate the last cubic term in each equation in E
~4.3!, ~cf. @4#!. However, this simplification is only possibl
when nv@nm. In the present paper we have found,
explicit calculation, that in factnv5O(G22). This result
has two important consequences. First, it implies that
frequenciesv6 stop oscillating withG for large enoughG
and hence that there are no 1:1 resonances in containe
sufficiently large aspect ratio. Once this is the case all m
crossings become structurally stable with the like-par
crossings always shielded by an opposite parity instability
a lower Rayleigh number. If this is true then the structure
the neutral curves for an overstable system in a large eno
container resembles that for a large aspect ratio steady
system with Neumann boundary conditions at the sidewa
as hypothesized by Hirschberg and Knobloch@13#. This dis-
cussion suggests that, given a separation ratioS, there is an
interval in G in which there is a substantial gap between t
first two modes to set in and the next pair. This interval
larger for smalleruSu but not infinite. In particular, for anyS
there is an aspect ratio such that, for largerG, the gap is
absent and nonresonant crossings between modes from
ferent families take place. Second, it indicates that no s
plification of Eqs.~4.3! will take place since the frequenc
difference and growth rates of both modes will typically
comparable, i.e., the dynamics near the codimension-
points will be
described by a pair of complex amplitude equations w
brokenD4 symmetry.

It is of interest to rewrite Eqs.~4.3! in terms of traveling
wave coordinates (v,w), wherez15v1w, z25v2w:

v̇5~m1 iv!v1 1
2 ~nm1nv!w1auvu2v1buwu2v1cw2v̄,

~4.4a!

ẇ5~m1 iv!w1 1
2 ~nm1nv!v1auwu2w1buvu2w1cv2w̄,

~4.4b!

where m[ 1
2 (m11m2), v5 1

2 (v11v2), and a5A1B
1C, b52A22C, c5A2B1C. In this form it is possible
to compare Eqs.~4.3! with the corresponding ones for a
annular system in which the initial instability is a Hopf b
furcation with O~2! symmetry:

v̇5~m1 iv!v1auvu2v1buwu2v, ~4.5a!

ẇ5~m1 iv!w1auwu2w1buvu2w. ~4.5b!

These equations describe the competition between trave
waves (v,w)5(v,0), and standing waves (v,w)5(v,v),
both of which bifurcate simultaneously in such a contain
and have frequencies nearv. This interpretation of the am
plitudes (v,w) follows from the expression for the temper
ture perturbation,

u~x,z,t !5Re@$veikx1we2 ikx% f ~z!1•••#, ~4.6!
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where f (z) is thevertical eigenfunction.
There are two notable differences between Eqs.~4.4! and

~4.5!. The first difference, the presence of the terms (w,v), is
to be expected and represents the effect of breaking tran
tion invariance at linear order; it is responsible for the sp
ting of the Hopf bifurcation with O~2! symmetry into two
consecutive Hopf bifurcations@3#. We have seen such spli
ting in Fig. 5, for example. However, the second differen
the presence of the terms (w2v̄,v2w̄) is nonperturbative and
indicates that the sidewalls play an important role in
near-onset behavior of the system. Indeed, as demonst
a

-
,

-

la-
-

,

e
ted

by Renardy@21#, equations of the form~4.3! can be derived,
via center manifold reduction, from a pair of coupled com
plex Ginzburg-Landau equations with generic boundary c
ditions.
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